Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Systematic reviews and mapping studies are critical for synthesizing research, identifying gaps, and guiding future work, but they are often labor-intensive and time-consuming. Existing tools provide partial support for specific steps, leaving much of the process manual and error-prone. We present ProfOlaf, a semi-automated tool designed to streamline systematic reviews while maintaining methodological rigor. ProfOlaf supports iterative snowballing for article collection with human-in-the-loop filtering and uses large language models to assist in analyzing articles, extracting key topics, and answering queries about the content of papers. By combining automation with guided manual effort, ProfOlaf enhances the efficiency, quality, and reproducibility of systematic reviews across research fields. A video describing and demonstrating ProfOlaf is available at: https://youtu.be/4noUXfcmxsE
While a multi-agent approach based on large language models (LLMs) represents a promising strategy to surpass the capabilities of single models, its success is critically dependent on synergistic team composition. However, forming optimal teams is a significant challenge, as the inherent opacity of most models obscures the internal characteristics necessary for effective collaboration. In this paper, we propose an interaction-centric framework for automatic team composition that does not require any prior knowledge including their internal architectures, training data, or task performances. Our method constructs a "language model graph" that maps relationships between models from the semantic coherence of pairwise conversations, and then applies community detection to identify synergistic model clusters. Our experiments with diverse LLMs demonstrate that the proposed method discovers functionally coherent groups that reflect their latent specializations. Priming conversations with specific topics identified synergistic teams which outperform random baselines on downstream benchmarks and achieve comparable accuracy to that of manually-curated teams based on known model specializations. Our findings provide a new basis for the automated design of collaborative multi-agent LLM teams.
Large Language Models (LLMs) excel at general tasks but underperform in specialized domains like economics and psychology, which require deep, principled understanding. To address this, we introduce ACER (Automated Curriculum-Enhanced Regimen) that transforms generalist models into domain experts without sacrificing their broad capabilities. ACER first synthesizes a comprehensive, textbook-style curriculum by generating a table of contents for a subject and then creating question-answer (QA) pairs guided by Bloom's taxonomy. This ensures systematic topic coverage and progressively increasing difficulty. The resulting synthetic corpus is used for continual pretraining with an interleaved curriculum schedule, aligning learning across both content and cognitive dimensions. Experiments with Llama 3.2 (1B and 3B) show significant gains in specialized MMLU subsets. In challenging domains like microeconomics, where baselines struggle, ACER boosts accuracy by 5 percentage points. Across all target domains, we observe a consistent macro-average improvement of 3 percentage points. Notably, ACER not only prevents catastrophic forgetting but also facilitates positive cross-domain knowledge transfer, improving performance on non-target domains by 0.7 points. Beyond MMLU, ACER enhances performance on knowledge-intensive benchmarks like ARC and GPQA by over 2 absolute points, while maintaining stable performance on general reasoning tasks. Our results demonstrate that ACER offers a scalable and effective recipe for closing critical domain gaps in LLMs.
The impact of different multilingual data mixtures in pretraining large language models (LLMs) has been a topic of ongoing debate, often raising concerns about potential trade-offs between language coverage and model performance (i.e., the curse of multilinguality). In this work, we investigate these assumptions by training 1.1B and 3B parameter LLMs on diverse multilingual corpora, varying the number of languages from 25 to 400. Our study challenges common beliefs surrounding multilingual training. First, we find that combining English and multilingual data does not necessarily degrade the in-language performance of either group, provided that languages have a sufficient number of tokens included in the pretraining corpus. Second, we observe that using English as a pivot language (i.e., a high-resource language that serves as a catalyst for multilingual generalization) yields benefits across language families, and contrary to expectations, selecting a pivot language from within a specific family does not consistently improve performance for languages within that family. Lastly, we do not observe a significant "curse of multilinguality" as the number of training languages increases in models at this scale. Our findings suggest that multilingual data, when balanced appropriately, can enhance language model capabilities without compromising performance, even in low-resource settings
The rapid growth of research literature, particularly in large language models (LLMs), has made producing comprehensive and current survey papers increasingly difficult. This paper introduces autosurvey2, a multi-stage pipeline that automates survey generation through retrieval-augmented synthesis and structured evaluation. The system integrates parallel section generation, iterative refinement, and real-time retrieval of recent publications to ensure both topical completeness and factual accuracy. Quality is assessed using a multi-LLM evaluation framework that measures coverage, structure, and relevance in alignment with expert review standards. Experimental results demonstrate that autosurvey2 consistently outperforms existing retrieval-based and automated baselines, achieving higher scores in structural coherence and topical relevance while maintaining strong citation fidelity. By combining retrieval, reasoning, and automated evaluation into a unified framework, autosurvey2 provides a scalable and reproducible solution for generating long-form academic surveys and contributes a solid foundation for future research on automated scholarly writing. All code and resources are available at https://github.com/annihi1ation/auto_research.
Social media has reshaped political discourse, offering politicians a platform for direct engagement while reinforcing polarization and ideological divides. This study introduces a novel topic evolution framework that integrates BERTopic-based topic modeling with Moral Foundations Theory (MFT) to analyze the longevity and moral dimensions of political topics in Twitter activity during the 117th U.S. Congress. We propose a methodology for tracking dynamic topic shifts over time and measuring their association with moral values and quantifying topic persistence. Our findings reveal that while overarching themes remain stable, granular topics tend to dissolve rapidly, limiting their long-term influence. Moreover, moral foundations play a critical role in topic longevity, with Care and Loyalty dominating durable topics, while partisan differences manifest in distinct moral framing strategies. This work contributes to the field of social network analysis and computational political discourse by offering a scalable, interpretable approach to understanding moral-driven topic evolution on social media.
Current tool-use large language models (LLMs) are trained on static datasets, enabling them to interact with external tools and perform multi-step, tool-integrated reasoning, which produces tool-call trajectories. However, these models imitate how a query is resolved in a generic tool-call routine, thereby failing to explore possible solutions and demonstrating limited performance in an evolved, dynamic tool-call environment. In this work, we propose PORTool, a reinforcement learning (RL) method that encourages a tool-use LLM to explore various trajectories yielding the correct answer. Specifically, this method starts with generating multiple rollouts for a given query, and some of them share the first few tool-call steps, thereby forming a tree-like structure. Next, we assign rewards to each step, based on its ability to produce a correct answer and make successful tool calls. A shared step across different trajectories receives the same reward, while different steps under the same fork receive different rewards. Finally, these step-wise rewards are used to calculate fork-relative advantages, blended with trajectory-relative advantages, to train the LLM for tool use. The experiments utilize 17 tools to address user queries, covering both time-sensitive and time-invariant topics. We conduct ablation studies to systematically justify the necessity and the design robustness of step-wise rewards. Furthermore, we compare the proposed PORTool with other training approaches and demonstrate significant improvements in final accuracy and the number of tool-call steps.
Vertex hunting (VH) is the task of estimating a simplex from noisy data points and has many applications in areas such as network and text analysis. We introduce a new variant, semi-supervised vertex hunting (SSVH), in which partial information is available in the form of barycentric coordinates for some data points, known only up to an unknown transformation. To address this problem, we develop a method that leverages properties of orthogonal projection matrices, drawing on novel insights from linear algebra. We establish theoretical error bounds for our method and demonstrate that it achieves a faster convergence rate than existing unsupervised VH algorithms. Finally, we apply SSVH to two practical settings, semi-supervised network mixed membership estimation and semi-supervised topic modeling, resulting in efficient and scalable algorithms.
Recent advances in finance-specific language models such as FinBERT have enabled the quantification of public sentiment into index-based measures, yet compressing diverse linguistic signals into single metrics overlooks contextual nuances and limits interpretability. To address this limitation, explainable AI techniques, particularly SHAP (SHapley Additive Explanations), have been employed to identify influential features. However, SHAP's computational cost grows exponentially with input features, making it impractical for large-scale text-based financial data. This study introduces a GRU-based forecasting framework enhanced with GroupSHAP, which quantifies contributions of semantically related keyword groups rather than individual tokens, substantially reducing computational burden while preserving interpretability. We employed FinBERT to embed news articles from 2015 to 2024, clustered them into coherent semantic groups, and applied GroupSHAP to measure each group's contribution to stock price movements. The resulting group-level SHAP variables across multiple topics were used as input features for the prediction model. Empirical results from one-day-ahead forecasting of the S&P 500 index throughout 2024 demonstrate that our approach achieves a 32.2% reduction in MAE and a 40.5% reduction in RMSE compared with benchmark models without the GroupSHAP mechanism. This research presents the first application of GroupSHAP in news-driven financial forecasting, showing that grouped sentiment representations simultaneously enhance interpretability and predictive performance.
Understanding how ideas develop and flow in small-group conversations is critical for analyzing collaborative learning. A key structural feature of these interactions is threading, the way discourse talk naturally organizes into interwoven topical strands that evolve over time. While threading has been widely studied in asynchronous text settings, detecting threads in synchronous spoken dialogue remains challenging due to overlapping turns and implicit cues. At the same time, large language models (LLMs) show promise for automating discourse analysis but often struggle with long-context tasks that depend on tracing these conversational links. In this paper, we investigate whether explicit thread linkages can improve LLM-based coding of relational moves in group talk. We contribute a systematic guidebook for identifying threads in synchronous multi-party transcripts and benchmark different LLM prompting strategies for automated threading. We then test how threading influences performance on downstream coding of conversational analysis frameworks, that capture core collaborative actions such as agreeing, building, and eliciting. Our results show that providing clear conversational thread information improves LLM coding performance and underscores the heavy reliance of downstream analysis on well-structured dialogue. We also discuss practical trade-offs in time and cost, emphasizing where human-AI hybrid approaches can yield the best value. Together, this work advances methods for combining LLMs and robust conversational thread structures to make sense of complex, real-time group interactions.